incedo lighthous

Schema

incedo

Table of Content

1 Introduction

p. Transitioning to Multi-Tenancy: Challenges and Benefits

3 SaaS Application Design Considerations

4 SaaS Application Security Considerations

5 Trade-offs in Database Design for Design Isolation

6 Case Study: Data Isolation with Database Schema Per Tenant
7 Schema based Multi-Tenancy Database Design

8 One Time Tenant Setup and User Sign-up Workflows

9 Multi-tenancy Request Flow
JO Conclusion

n References

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Introduction

Purpose of the Paper

The goal of the paper is to address the complexities of data isolation introduced by engineering systems
managing several tenants, which may result in data privacy infringements and regulatory noncompliance.
This investigation seeks to analyze several ways for ensuring data isolation among tenants in the design of
multi-tenant systems and provide insights gained from our practical experience in implementing
multi-tenancy in our own software SaaS platform to enable readers to make informed decisions on the
selection of a data isolation approach that aligns with their application requirements.

Introduction to multi-tenancy

Multi-tenancy pertains to the capability of a single application instance to accommodate several
businesses or business units inside the same firm, referred to as tenants, utilizing a shared infrastructure
comprising computing, storage, networking, and application delivery resources. In this context, the term
"single tenant" refers to all users associated with a single corporate body or business unit inside a
company, so differentiating them from individual end-users. It has become prevalent in the era of cloud
computing and software-as-a-service (SaaS) applications.

The objective of multi-tenancy is to optimize resource efficiency while upholding stringent boundaries for
each tenant's data, hence assuring data isolation.

Prominent instances of multi-tenant apps encompass Salesforce, Microsoft 365, Google Workspace, and
WordPress.com.

Structure of the Paper

The document commences with an overview of multi-tenancy, emphasizing its fundamental concepts
and the advantages it offers in software engineering. Subsequently, we present a thorough examination of
how applications might employ data isolation to effectively accommodate multiple clients utilizing a
single instance. As a case study, we will discuss how we implemented multi-tenancy in one of our
platforms, moving from dedicated hosting to hosting numerous tenants on shared infrastructure.

Audience

This paper is intended for anyone engaged in the development of multi-tenant solutions, specifically
Independent Software Vendors (ISVs) that provide software for both enterprise clients and consumer
internet applications. This includes Chief Technology Officers, software architects, software engineers, and
product managers.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo
Transitioning to Multi-Tenancy: Challenges
and Benefits

Transitioning to multi-tenancy presents distinct problems, and the application's complexity may first seem
to escalate. Nonetheless, it has substantial advantages. When performed correctly, it enables numerous
tenants to utilize a single application and shared infrastructure while preserving data segregation,
resulting in enhanced operational efficiency and reduced costs.

The diagram illustrates the transition from a traditional single-tenant architecture to a multi-tenant
architecture, highlighting the fact that less infrastructure is required in multi-tenancy paradigm.

Before Multi-Tenancy After Multi-Tenancy

Tenant A Tenant B Tenant C Tenant A Tenant B Tenant C

— y N
Application Application Application Application
Database Database Database Database

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

The table below illustrates the problems associated with multi-tenancy and the advantages of its adoption.

Challenges Before Multi-tenancy

Benefits of Multi-tenancy

Infrastructure
Requirement

Dedicated Infrastructure for Distinct
Clients: Necessitated individual setups
resulting in excessive expenses and
operational overheads.

Utilization of Shared Infrastructure for
Various Clients: The allocation of shared
infrastructure resources among multiple
tenants reduces costs and operational
expenditures.

Change Significant Overhead: Deployments Optimized Change Management:

Management required coordination across several Centralized oversight of updates,
environments, resulting in delays and patches, and upgrades enhances
operational burdens. administration efficiency and minimizes

overhead.

Support & Extensive Support and Maintenance: The Reduced Support and Maintenance:

Maintenance management of many instances of the Fewer instances result in diminished
same application resulted in intricate efforts for support, maintenance, and
support, maintenance, and update update activities.
responsibilities, hence elevating
administrative overhead.

Scalability Scalability Challenges: Scaling Improved Scalability: Capability to
necessitated the independent provisioning support expanding users or demand via
of additional resources for each tenant, effective resource distribution and
resulting in inefficiencies. scaling.

Architecture Fragmented Architecture: The IT Streamlined IT Architecture: A cohesive

Complexity architecture was characterized by multi-tenant environment enhances IT

fragmentation resulting from resource
redundancy and integration difficulties
among clients.

infrastructure integration and minimizes
administrative overhead.

Customizations

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema

At-will, ad hoc, and poorly conceived
fragmented customizations: Bespoke
business logic gain per client gains traction
with poorly managed frontline
commitments over meticulously planned
setups and well-defined customization
workflows, such as those for enterprise
onboarding and branding.

Promotes superior design thinking and
engineering: Product-oriented
approach for meticulously considered
configurations and customizations
readily available to guarantee the
platform's functionality across numerous
tenants.

www.incedoinc.com

incedo
SaaS Application Design Considerations

In developing an enterprise grade application, several key factors must be considered to ensure its
success and effectiveness. The design considerations for our application involve evaluating various
aspects that impact its performance, scalability, security, and usability. This includes addressing how to
effectively manage data isolation, and support customization while balancing resource utilization and
system efficiency. By carefully considering these elements, we can create a robust architecture that
meets the needs of diverse users and ensures enterprise grade characteristics and security. Below are the
application design considerations that must be kept in mind:

Data Isolation: In a multi-tenant architecture, ensuring robust data isolation is critical to maintaining
tenant privacy and security. Data isolation can be achieved through various strategies, such as using
separate databases, schemas, or tables for each tenant. The choice of isolation level depends on the
specific needs of the application, with higher levels of isolation providing better security but potentially
increasing complexity and resource usage. Effective data isolation prevents unauthorized access and
ensures that a tenant’s data remains private and unaffected by other tenants’ operations. Choosing the
appropriate data isolation level (e.g., database, schema, table) is also influenced by many factors such as
existing infrastructure constraints, performance, billing, and customization.

Dynamic Tenant Onboarding and Offboarding: Implementing streamlined processes for adding new
tenants to the system and removing existing tenants is required to be done out-of-the-box without
downtime. For enterprise users onboarding, there may be a need to integrate with tenant’s
authentication and authorization systems if pre-existing connectors with the application are not yet
available. For offboarding there may be a need to build a software feature to export the data prior to
deletion of tenant data.

Resource Allocation and Quotas: For enforcement of fair usage policies or upgrades to higher billing
tiers or for usage based pricing models, defining resource allocation policies and quotas for each tenant
to prevent resource contention and enforcement is a key aspect for configuring the resources and
application design.

Site Reliability Engineering and Observability: Implementing comprehensive monitoring and
Mmanagement capabilities to track system performance, tracking changes, and understanding how users
interact with the system through logs, traces, and metrics, detecting anomalies, data inconsistencies
across all tenants are key for continuous system improvements and improving customer experience.

Compliance and Regulations: Ensuring that the multi-tenant solution complies with industry
regulations and standards related to data privacy, security, and data residency requirements for each
tenant is a key requirement.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Database Performance: The solution should have sufficient strategies and techniques in place to scale
the database and mitigate database performance issues as platform scales. Leveraging a scalable
approach for database architecture ensures that the SaaS provider can onboard and maintain many
tenants without the risk of significant performance degradation. There are a variety of strategies used to
scale databases in a SaaS system. Examples include read replication to distribute read traffic,
multi-source setups for high availability, sharding to horizontally partition the database, and using
multiple clusters to manage different workloads. Additionally, techniques like database caching, for
CQRS (Command Query Responsibility Segregation), and serverless databases enhance performance
and scalability, ensuring the system can efficiently manage growing and varied tenant demands.

Billing: Billing in a multi-tenant application requires precise tracking of resource usage by each tenant.
This can include CPU, memory, storage, and API calls, among other metrics. Implementing usage-based
billing allows for a fair and transparent charging model, where tenants pay for exactly what they use. The
billing system should be tightly integrated with the application’s resource monitoring tools to accurately
capture usage data. In addition, the billing system must be flexible enough to accommodate different
pricing models, such as pay-as-you-go, tiered pricing, or subscription-based plans, to meet the diverse
needs of tenants.

Application Delivery Network and other shared Hosting Considerations: For application delivery
network (ADN) elements like shared infrastructure, web servers, DNS (Domain Name Server), and WAF
(Web Application Firewall), it is important to note that these components often rely on shared resources
across tenants. For example:

e Web Servers: Typically, web servers are shared among tenants, which can lead to resource
contention. However, with proper configuration and scaling, performance can be maintained.

e DNS: DNS settings are shared and managed centrally, with tenants potentially sharing the same
domain but using subdomains for isolation.

e WAF L4 (Layer 4) vs. L7 (Layer 7): The choice between Layer 4 (L4) and Layer 7 (L7) WAF depends
on the level of inspection required. L4 focuses on network traffic, while L7 provides more granular
protection by analysing application-level data, which might be crucial for multi-tenant applications
where tenants share the same application stack.

o Load Balancer: Load balancer distributes incoming traffic across multiple servers for performance
and reliability, especially when tenants share the same infrastructure.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

SaaS Application Security Considerations

Ensuring robust security is crucial in multi-tenancy applications, as it safeguards tenant data, enforces
isolation, and protects against potential vulnerabilities at every layer of the system. Below points must be
considered in ensuring the security of the application:

Comprehensive Security Across All Architectural Layers: Ensuring robust tenant isolation requires
comprehensive security measures integrated into every layer of the architecture. At the network layer,
firewalls, intrusion detection systems, and secure network configurations are essential to prevent
unauthorized access. The application layer must implement strong authentication and authorization
protocols, enforcing tenant-specific access controls to protect against unauthorized data exposure. At
the data layer, encryption both at rest and in transit is crucial to safeguarding sensitive tenant
information. Regular security audits, compliance checks, and continuous monitoring across all layers
further strengthen the overall security posture, ensuring that tenant data remains isolated and protected
from potential threats.

Authentication: For multi-tenancy applications, authentication is crucial for ensuring secure access
control tailored to each tenant’s needs. Each tenant may employ different authentication and
authorization mechanisms based on their requirements. This flexibility allows integration with various
protocols such as SAML (Security Assertion Markup Language), OAuth (Open Authorization) and
integration with multiple Identity and Access Management (IAM) Providers like OnelLogin, AWS Cognito,
Azure AD (Active Directory), and Pingld. By supporting diverse authentication methods, the application
can accommodate varying security standards and compliance requirements across different tenants,
enhancing overall security while maintaining adaptability and user management efficiency.

Encryption of Data: For multi-tenancy applications, encryption is essential for protecting sensitive data
and maintaining tenant privacy. Implementing encryption ensures that data is securely stored and
transmitted, with the added benefit of enabling tenant-specific encryption keys. Each tenant can have
its own set of encryption keys, enhancing data isolation and security. These keys can be managed using
client-preferred vault solutions, such as HashiCorp Vault, AWS Secrets Manager, or Azure Key Vault. This
approach allows for flexible and secure key management practices, ensuring that data remains
protected according to the specific needs and policies of each tenant.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Entitlement & RBAC (Role Based Access Control): The solution should offer the capability to scope
access to features or product functionality. Leveraging role-based access control (RBAC) in SaaS
environments enables developers to manage and restrict access to various products, features, and
functions within and across applications. This model is typically supported through a centralized
mechanism that enforces access policies consistently across the platform. Advanced and flexible RBAC
implementations should provide a richer set of options, allowing administrators to associate multiple
roles with individual users, thereby tailoring access permissions to specific needs of various tenants.

Cross-Tenant Prevention: In a schema-based multi-tenancy model, it is imperative to ensure strict
measures are in place to prevent unauthorized access to data across tenants. Each tenant's data should
be segregated within distinct schemas, enforcing isolation at the schema level. Robust authentication,
authorization, and role-based access control mechanisms must be implemented to restrict data access
to only authorized users within their respective tenant's schema. Additionally, employing encryption,
network security protocols, and regular audits further fortify the system against potential breaches,
safeguarding the integrity and confidentiality of tenant data. Also, different keys should be used for
different tenants for encryption as mentioned above.

Cross-Tenant Event Tracking: To ensure regulatory and compliance standards are met, SaaS solutions
must have the capability to log, audit, monitor, and alert on potential cross-tenant events. This involves
implementing robust logging mechanisms to capture all relevant activities, performing regular audits to
ensure adherence to policies, and employing real-time monitoring to detect any suspicious or
unauthorized actions. Alerts are configured to notify administrators immediately if cross-tenant
violations are detected, thereby ensuring swift response, and maintaining compliance with regulatory
standards.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Trade-offs in Database Design for Design
Isolation

Database design strategies determine how tenant data is managed and isolated within a shared
infrastructure. This section explores the three primary approaches — dedicated database, schema, and
table-based with each approach providing trade-offs for data isolation, scalability, and resource utilization.

Database based multi-tenancy: In this approach, each tenant's data is stored in a separate database
instance. The configuration of database connections is created/maintained dynamically based on the
current tenant, enabling isolation and scalability across multiple databases.

Schema-Based multi-tenancy: In schema-based multi-tenancy, each tenant's data is stored in a separate
schema within the same database instance allowing dynamic switching of schemas based on the current
tenant, ensuring data isolation while utilizing shared database resources.

Table-Based multi-tenancy: Table-based multi-tenancy involves storing data from multiple tenants
within the same database table, with an additional column indicating the tenant association for each
record. Support is provided for automatically filtering data based on the current tenant, ensuring data
segregation at the application level.

Making a choice for database design for data isolation is not quite straight-forward and should consider
other decision criterion such as flexibility and controls for quota/policy enforcement, performance
degradation based on demand or users, ease of configurations, ease of development, and more and arrive
at the trade-offs based on application under consideration.

The table below compares different multi-tenancy strategies - Database-Based, Schema-Based, and
Table-Based across several decision criteria to help the reader in selecting the best approach for user's

specific project needs.

Values:

e High: Optimal for the given criterion (e.g., high isolation, high quota enforcement with ‘database
based multi-tenancy’).

e Moderate: Adequate but with some limitations.

e Low: Limited or constrained in the context of the given criterion.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

Decision Criteria

Data Isolation - Degree to
which data is separated of
tenants

Quota/Policy Enforcement
(Disk Space Allocation,
Limits Efficiency)

Performance - The ability of
the system to manage loads
and provide fast responses.

Configurations - Adjusting
settings per tenant without
change of code

Customizations - Making
changes or adding features
specific to each tenant with
code changes for workflows,
user interfaces, or even how
certain features behave for a
specific tenant.

Ease of Development - The
simplicity and speed with
which developers can create,
manage, and maintain the
environment.

Resource Isolation - The
ability to separate and
manage resources
independently for different
tenants.

Ease of Usage Billing: The
ability to track and charge
resource usage per tenant,
varying from
straightforward in database
multi-tenancy to complex in
table multi-tenancy

Database

High

High

High

High

High

Moderate

High

High

Schema

Moderate

Moderate

High

Medium

Medium

Moderate

Moderate

Moderate

Low

Low

Low

Low

Low

High

Low

Low

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema

incedo

Additional Information

Database-based offers complete isolation,
schema provides moderate separation within
the same database, and table-based relies on
application logic for isolation, thus lower.

Database-based allows strict quota
enforcement per tenant, schema allows for
moderate control, table-based has the least
granular enforcement of quotas/policies.

Both database and schema approaches offer
high performance due to isolation at the
database or schema level. Table-based
performance can degrade with tenant and
data volume growth.

For each tenant having own database allows
high level of configurability. You can
configure settings independently for each
tenant's database instance (e.g., different
connection pools, disk space, or CPU
allocation).

Each tenant having its own database allows
for a high degree of customization for
changes such as specific application logic

Middleware like Java/Spring Hibernate
simplifies tenant management for schema
and table-based approaches, though
database-based still requires additional
complexity for configuration.

Databases provide full resource isolation,
crucial for security and performance in
multi-tenancy. Schemas offer partial isolation
within a shared database, while tables share
resources broadly.

When each tenant has a separate database,
tracking usage for billing purposes is
straightforward. When all tenants share the
same tables, with tenant data distinguished
by a tenant identifier it makes things
challenging to track and bill usage per tenant,
as resources like queries, storage, and
compute are shared.

www.incedoinc.com

incedo

Case Study: Data Isolation with Database
Schema Per Tenant

The following case study covers our implementation approach for data isolation in one of our platforms,
which transitioned from dedicated hosting to hosting many tenants on shared infrastructure in line with
our philosophy to scale when you need to scale.

Overview of Application in consideration: Al-driven Decision Automation platform that enables
business leaders to improve operational metrics and deliver higher business impact by automating
insights from data, actions recommendations and integration into decision workflows.

Business model: The solution is offered as a Software-as-a-Service (SaaS) product.

End Users: CXOs, business and operational leaders, business analysts.

Constraint: Each tenant on the platform would introduce their own schema and data; for instance, a
banking client would provide their mortgage application data along with distinct KPIs, which would
differ from those of a wealth management client offering portfolio management advisory services, who
would have a separate set of KPIs. As the client base expanded, all clients had to be integrated onto the
platform without altering the code, necessitating a configuration-heavy and customization-light
approach to minimize maintenance expenses, while also delivering insights tailored to each client to

enhance their operational KPIs. This constraint effectively eliminated 'table-based design'.

Schema Based multi-tenancy was chosen due to below reasons:

Simplicity and Manageability

Scalability . ' Data Isolation

Performance Optimization Easily Developable and Testable

Compliance and Governance

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Simplicity and Manageability: For the application in consideration, managing schema-based
multi-tenancy is straightforward compared to other multi-tenancy models. With each tenant's data
meticulously organized within its own schema, database administration tasks such as backup, restore,
and maintenance become simpler and more efficient. Additionally, schema-based multi-tenancy
simplifies data migration and tenant onboarding processes, reducing operational overhead.

Data Isolation: For the application in consideration, schema-based multi-tenancy ensures strong data
isolation by storing each tenant's data in separate database schemas. This separation prevents data
leakage and unauthorized access between tenants, enhancing data privacy and security which can easily
happen in table based multi-tenancy.

Ease of code refactoring: For the application in consideration, schema-based multi-tenancy presented a
seamless integration path with the current architecture of the application. Leveraging schema-based
multi-tenancy allowed for a straightforward adapting of existing components and modules to support
multi-tenancy requirements without necessitating extensive architectural overhaul. One of the key
advantages of schema-based multi-tenancy is its compatibility with relational database management
systems (RDBMS) used in the current infrastructure such as PostgreSQL or Oracle. Since most RDBMS
platforms inherently support schema separation, integrating schema-based multi-tenancy into the
existing database layer can be achieved with minimal code changing in existing application and hence
needing for much less regression testing as well.

Compliance and Governance: Schema-based multi-tenancy simplifies compliance with industry
regulations, as each organization’s data remains exclusively within its assigned schema.

Performance Optimization: Segregating tenant data into separate schemas leads to more efficient data
retrieval and query execution. This optimization minimizes contention for database resources and
improves overall application performance, especially in scenarios with increasing tenants and increasing
data volume.

Scalability: For the application in consideration, schema-based multi-tenancy offers scalability
advantages by allowing for easy creation of schema either in-advance or dynamically. As the number of
tenants grows, additional schemas can be provisioned dynamically, ensuring that the application can
scale seamlessly to accommodate increased demand without sacrificing performance or stability, or new
schemas can be created in advance to save the provisioning time.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Schema-based Multi-Tenancy Database design

Tenant onboarding is a key workflow in a multi-tenant environment, especially in B2B applications,
where each tenant represents an entire organization or a business unit within an organization. In the
architecture we have chosen for the application under consideration, each tenant operates within its
dedicated schema. This approach ensures strong data isolation while simultaneously enabling the

platform to support multiple tenants. The database design for the same is as depicted in the diagram
below.

Database

ﬂi access_control_schema

P
tenant_schema_mapping E]
Tenant | SCHEMA | AUTH OTHER COLUMNS Schema-1
pr——
T1 Schems- 1 FINGID 'Fi
T2 Schems-2 OALUTH E
Schems-2
T3 Schema-3 | COGNITD e
T4 Schems-4 | OFEMNID " ﬁ A
user_tenant_mapping @
Schams-3
User Tenant S—
r——
u T
T i
Schems-4
Uz TZ h J
L4 T3

The database is designed with a dedicated schema (for representation purpose called

access_control_schema) for user management, which holds all relevant information about tenants and
tenants’ association with the users. This schema includes two key tables:

tenant_schema_mapping: This table maintains the mapping between each tenant and its associated
schema.

user_tenant_mapping: This table records the association between users and their respective tenants.
Additionally, the database contains individual tenant schemas for storing tenant-specific data. As shown
in the diagram, Tenant T1 is associated with Schema-1and has User U1.

This approach ensures that different schemas provisioned by application are for different tenants which
ensures data isolation.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

One Time Tenant Setup and User Sign-up
Workflows

One-time Tenant Onboarding: When a new tenant such as a company or organization is onboarded,
schema provisioning is done for the tenant. This involves creating a schema specifically for the tenant,
which stores all the tenant’s data as per tenant’s requirements and inserting a record in
access_control_schema's table tenant_schema_mapping to keep the mapping between the tenant and
the schema name for the tenant.

Further, different tenants may have varying security and compliance requirements, so the system allows
for be-spoke integrations for authentication by having provision to save the authentication mechanism.
For example, a tenant may opt for an in-house Open LDAP solution, while others may prefer other
authentication protocols such as Security Assertion Markup Language (SAML), OAuth, or Active
Directory Federation Services (ADFS) from ldentity Providers like Microsoft, Ping ID, Okta, One Identity,
Onelogin.

User Signup: When a new user registers in the application, depending on the tenant to which user
belongs, a mapping is created in user_tenant_mapping table depicting the mapping between end-user
& tenant. This ensures that each user gets correctly mapped by the application to their tenant, ensuring
appropriate data access and isolation.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Multi-Tenancy Request Flow

The multi-tenancy request flow governs how requests from different tenants are securely processed and
routed to their own schema preserving security and ensuring operational integrity.

Below over-simplified diagram depicts how the two users U1 & U2 can access the system concurrently
retrieving the data from their configured schema based on the tenant to which they belong.

4 - N

Database
=
2o L
Coownm] EI'_® ﬂ _I.’ ﬁ ‘g@ -,
| @__, s A A
. :: |I—k|J __r’ ('@ Business ” sﬁ@l?em ﬁ
Logic \, J/ Schema-3
e — User Interface o f = Y (=)
\ API Backend / >k5cﬁ.z) Ls‘:@m)

_ /

The workflows are:

Step 1: Users (U1 and U2) interact with the User Interface (Ul) of the application.

Step 2: Once the Ul captures the user input, it sends a request to the API Backend.

Step 3: The API's business logic module, interacts with the access_control_schema in the database to
retrieve schema name based on request (explained further below in section Identifying the schema
based on http request)

Step 4: Once the schema name is identified (as in step above). Query-rewriting is used to modify the

gueries based on the current tenant schema to ensure all operations—such as data retrieval, updates,
and inserts are executed within the correct schema (explained further in section Query Rewriting)

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Identifying the schema based on http request: To identify the schema for the user the username from
the request needs to be fetched.

In scenarios, where the request contains an authentication token, the username is extracted from the
token:

String token = request.getHeader("Authorization");
String username = jwtService.getUsernameFromToken(token);

If the token is encrypted, the system must first decrypt the token before extracting the username.

In scenarios not using token-based Authentication, username can be fetched from the Security Context
(like Spring Security as referred to at https:/docs.spring.io/spring-security/reference/). The method of
retrieval is illustrated below:

Principal principal = SecurityContextHolder.getContext().getAuthentication();
String user = principal.getName();

After identifying the user, the system, needs to resolve the tenant's schema. For achieving this, the
username can be used to look up the corresponding tenant in the User_Tenant_Mapping table for the
request. '

Example Using the figures in above previous section we can see that User U1 belongs to Tenant T1 &
Tenant T1is associated with Schema-1. Then using this schema name, we can re-write the query which is
mentioned in the below section.

Query Rewriting: Once the schema name has been determined, the system performs query rewriting.
This process involves replacing schema placeholders in the query (which is written in the business logic
to fetch the required data as per the request) with the actual schema name specific to the tenant. This
ensures that each tenant's data is stored and accessed from the correct schema, maintaining data
isolation across the tenants.

Original SQL Query with Placeholder: | SELECT column_list FROM {{schema}}. mytable WHERE my_column = 123;

Rewritten Query for UT: SELECT column_list FROM Schema-1.mytable WHERE my_column =123;

Rewritten Query for U2: SELECT column_list FROM Schema-2.mytable WHERE my_column =123;

For building multi-tenanted applications in Java, Hibernate's built-in multi-tenancy functionality can be
leveraged, and Hibernate Interceptors can be used to manipulate or rewrite queries as needed, making
query handling more flexible and efficient.

In addition to above method, a tenant can be allocated a separate subdomain (like
tenantl.myproduct.com) or a slug URL (like myproduct.com/tenantl) to further personalize and isolate
the user experience. Both subdomain and slug URL approaches offer branding for the tenant.

In setups using subdomains (e.g., tenantl.myproduct.com), the tenant can be inferred directly from the
subdomain. Similarly, a URL slug (e.g., myproduct.com/tenantl) can also help identify the tenant. Once
the tenant is determined, the schema is fetched from the corresponding table.

By leveraging technigues mentioned above, the multi-tenancy architecture effectively ensures that
requests are processed accurately, with proper data isolation and security across tenants.

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Conclusion

The adoption of schema-based multi-tenancy especially for applications engineering for SaaS can be a
key design choice towards achieving data isolation, implementing native schemas per client, scalability,
cost efficiency, and flexibility in serving a diverse clientele while achieving seamless integration with
shared infrastructure. Schema provisioning ensures clear separation between tenants, improving data
isolation, security, and ease of management. This not only enhances data segregation but also simplifies
compliance with industry regulations, as each organization’s data remains exclusively within its assigned
schema.

References

Microsoft Corporation. (2024, July 11). Architect multitenant solutions on Azure. Retrieved from
https:/learn.microsoft.com:
https:/learn.microsoft.com/en-us/azure/architecture/guide/multitenant/overview?ocid=AID754288&wt.m
c_id=azfr-c9-scottha%2CCFID0O719

Schauder, J. (2022, July 31). How to integrate Hibernates Multitenant feature with Spring Data JPA in a
Spring Boot application. Retrieved from https://spring.io:
https://spring.io/blog/2022/07/31/how-to-integrate-hibernates-multitenant-feature-with-spring-data-jpa-i
n-a-spring-boot-application

Hibernate.org. (2017, Jan 18). Multitenancy. Retrieved from https:/docs.jboss.org:
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiTenancy.html

Hibernate.org. (n.d.). Chapter-16 Multi-tenancy. Retrieved from https://docs.jboss.org:
https:/docs.jboss.org/hibernate/core/4.1/devguide/en-US/html/ch16.html

Incedo Inc. (n.d.). Incedo Lighthouse - AWS Solutions Consulting Offer. Retrieved from
https:/aws.amazon.com:
https://aws.amazon.com/solutions/consulting-offers/incedo-lighthouse-ai-decision-automation-platform/

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

incedo

Introduction to Incedo Lighthouse™ -
Al Decision Automation Platform

Incedo Lighthouse™ is an Al-driven Decision Automation platform that enables business executives to
improve operational metrics and deliver higher business impact by automating insights and
recommended actions and integrating them into decision workflows.

"With Incedo Lighthouse companies automate identification of operational problems that are deeply
impacting business performance, leverage best-in-class Al and Data accelerators to reduce time to
insights and achieve rapid implementation of recommended actions." (“Incedo Lighthouse - AWS
Solutions Consulting Offer”) It supports multiple deployment models such as on-prem and public cloud
SaaS.

To learn more about Incedo SaaS practice and platforms,
please contact the authors.

Kulpreet Singh

Hi-Tech Solutions

Avjeet Singh Bhatia

Technical Architect

Whitepaper: Multi-Tenancy Simplified for SaaS: Data Isolation with Per Tenant Database Schema www.incedoinc.com

iIncedo

About Incedo

Incedo is a digital transformation expert empowering companies to
realize sustainable business impact from their digital investments.
Our integrated services and platforms that connect strategy and
execution, are built on the foundation of Design, Al, Data, and
strong engineering capabilities blended with our deep domain
expertise from digital natives.

With over 4,000 professionals in the US, Canada, Latin America, and
India and a large, diverse portfolio of long term, Fortune 500 and
fast-growing clients worldwide, we work across financial services,
telecom, product engineering, and life sciences industries.

©2025 Incedo Inc. All Right Reserved

rowsson: (F) (i8) (%)

Win in the
Digital Age

O+

Fortune 500

Customers

10+

Global
Locations

Our Global Presence

India
Gurugram
Chennai
Pune
Bengaluru
Hyderabad

USA

Santa Clara
New Jersey
Dallas
Boston

4k+

Employees
Globally

Canada
Ontario

Mexico
Guadalajara

www.incedoinc.com

https://www.facebook.com/IncedoInc
https://www.linkedin.com/company/incedo-inc/
https://twitter.com/IncedoInc
https://www.instagram.com/incedoinc/
https://www.youtube.com/channel/UC6LjAUc6LyvLSwrEOMJaH_Q
https://www.incedoinc.com

